


Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
MAY 2011 2. REPORT TYPE 00-00-2011 to 00-00-2011
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

From Detailsto Done. A Test-Driven Approach to Software Development | .\ nUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Boeing Defense, Space & Security,PO Box 516,St. L ouisM O,63166 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 23rd Systems and Softwar e Technology Conference (SSTC), 16-19 May 2011, Salt Lake
City, UT. Sponsored in part by the USAF. U.S. Government or Federal RightsLicense

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 25
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



= Moving Tests Forward

= 3 Rules of Test-Driven Development (TDD)
=TDD in Unit, Integration and Acceptance Testing
* Comprehensive TDD Process

= Pros and Cons of TDD

" Q&A

Copyright © 2011 Boeing. All rights reserved.



~ Traditional Development Cycle

Testing Follows Implementation:
Unit tests are executed after modules are completed.
Integration testing follows implementation.

Acceptance testing begins at the end of integration.

Integration

Requirements Design Implementation Test

Unit Test

Copyright © 2011 Boeing. All rights reserved.



Moving Tests Forward

Testing Occurs Before Implementation:
Acceptance tests are developed as part of the requirements.
Integration tests are developed as part of the design.
Unit tests are developed as part of the implementation.

Test are executed throughout implementation; test failures
drive what to do next.

Requirements Design Implementation

Write & Execute Unit Tests

Write Write Execute Integration Tests
Acceptance Integration

T T
ests ests Execute Acceptance Test

Copyright © 2011 Boeing. All rights reserved.



~ Testing in an Agile Development Cycle~—__

Agile Development is not phase-oriented, so
tests are executed throughout the cycle, not
just during implementation.

Design

Implementation

Write & Execute Unit Tests

Execute Integration Tests

Execute Acceptance Test

Copyright © 2011 Boeing. All rights reserved.



How Does Testing Drive Development?

Test-Driven Development (TDD) says to create tests first
and let them drive implementation. The three rules of
TDD demonstrate how to do that.

3 Rules of TDD

~ Do work
1. Wn-te-p-rc-d-u-chm'rco-d-e-only to pass a failing test.

Do testing |
2. Wite-only enough-testecocde to fail.

Do work

3. YWrite-only enough predguetton—eoede to pass.

Copyright © 2011 Boeing. All rights reserved.



~ TDD at the Unit Test Level

Unit tests are created by developers to add functionality
to a class or module.

At the unit test level the three rules are manifest in the
“red-green-refactor” approach:

Red-Green-Refactor

Write a unit test that fails.

Write production code to make the test pass.

Clean up both test and production code.

for example ...

Copyright © 2011 Boeing. All rights reserved.



TDD at the Unit Test Level (cont'd) -

—

Using the Red-Green-Refactor approach, developers

create unit tests for individual modules as they add
functionality.

Mock
( ) Object B
Invoke \

g— Tests Module A
—— unit
- - P under External

i Evaluate test Dependencies

Results

. \ ) / Mock
Unit Database
Tests

External dependencies are handled
by creating mock objects.

Copyright © 2011 Boeing. All rights reserved.



TDD at the Integration Test Level

Initial integration tests are the unit tests with
real components replacing mock objects.

e N
)
—
Module —
( \/ B M_
M—
(7 e « Module \ ) -
(5 e— A Additional
o e < Integration Tests
atabase a
\_/
M—
\_ Y,

Additional integration tests may be needed
to address scaling, loading or speed.

Copyright © 2011 Boeing. All rights reserved.



TDD at the Acceptance Test Level

Acceptance tests may take the form of use case
scenarios executed via a user interface ...

Acceptance
Test
Scenario ( )
[ e GUI
o Module
P — —_—
B_ B
= — e
—P>
Module \____
A
—>
M— ~——
) fr— External \ /\
(5 e— Application Database
M_
N~
Integration

Tests

... or they may be the integration tests
from an external application.

Copyright © 2011 Boeing. All rights reserved.



Driving Development with Tests

Acceptance

Test
Scenario

Create
Acceptance
Test

M—
M—
[ —

M—

Develop
Initial
Design

Feature
Group

User
Story

Feature
Complete

i

Copyright © 2011 Boeing. All rights reserved.

Execute
Acceptance
Tests

Create
Integration

Test
\> B ——

e
Into Story
Groups Us

Customer

Integrate
and Test
Components

Integration
Tests

User
Story

Create
Modules
using
Red-Green-
Refactor

Create
User
Stories

0
=k




~ From Detalls to Done

» Develop acceptance test scenarios from groups of related
features.

» Develop integration tests for components of a simple,
initial design.

» Develop unit tests and components using the red-green-
refactor approach and mock objects.

» Integrate components by replacing mock objects with
actual components and executing unit and integration
tests.

» EXxecute acceptance test scenarios to ensure all
functionality is complete.



Benefits of Test-Driven Development

Test-Driven
Testable Designs
Development ~—— Creates inherently testable designs

~__yp» Complete Test Suite
Creates a test suite that can be
retained for regression testing
Reduced Scope Creep

Fights developer-induced scope

creep by limiting efforts to what

needs to be developed

Lean Code — Simple Designs

Emphasis on writing just enough

code drives lean and simple solutlons

Definition of Done
Up front test definition provides a
concrete “definition of done”

Customer Acceptance Tests
Allows customers to write acceptance
level tests without needing to
understand technical details

Copyright © 2011 Boeing. All rights reserved.



Drawbacks of Test-Driven Development

Test-Driven Paradigm Shift/Learning Curve
Development ~—— ~___—W Canaffect productivity due to a lack of

necessary skills and experience, as
well as resistance to culture change

Drop in Perceived Productivity
Feature productivity is traded off for
stability, quality and maintainability

Simple Designs
Creates a solution, but not necessarily
the best or most efficient solution
Exhaustive Testing Not Addressed

4'

Difficult and/or inefficient for projects
requiring exhaustive testing

Not a Silver Bullet
Bad Requirements =» Bad Tests = Bad Software

Copyright © 2011 Boeing. All rights reserved.






Very Simple TDD Example — Hello World-__

Greeter_Test

[Test]
public class Greeter_Test

{
[TestMethod]

public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()

}
}

Compilation Error

Copyright © 2011 Boeing. All rights reserved.



Very Simple TDD Example (cont’d)

[Test] public class Greeter
public class Greeter_Test {
{ Greeter()
[TestMethod] ¥
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()

}
}

Copyright © 2011 Boeing. All rights reserved.



Very Simple TDD Example (cont’d)

[Test] public class Greeter
public class Greeter_Test {
{ Greeter()
[TestMethod] by
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
Assert(myGreeter.getGreeting(), “Hello World™)

}
}

Compilation Error

Copyright © 2011 Boeing. All rights reserved.



Very Simple TDD Example (cont’d)

[Test] public class Greeter
public class Greeter_Test {
{ Greeter()
[TestMethod]
public void TestDisplayHelloWorld() String getGreeting()
{ {
Greeter myGreeter = new Greeter() return “”’
Assert(myGreeter.getGreeting(), “Hello World™) 3}
b 3
3

Test Failure

Copyright © 2011 Boeing. All rights reserved.



Very Simple TDD Example (cont’d)

[Test] public class Greeter
public class Greeter_Test {
{ Greeter()
[TestMethod]
public void TestDisplayHelloWorld() String getGreeting()
{ {
Greeter myGreeter = new Greeter() return “Hello World”
Assert(myGreeter.getGreeting(), “Hello World™) }
b 3
3

Copyright © 2011 Boeing. All rights reserved.



Very Simple TDD Example (cont’d)

[Test] public class Greeter
public class Greeter_Test {
{ const String greeting = “Hello World”
[TestMethod]
public void TestDisplayHelloWorld() Greeter()
{
Greeter myGreeter = new Greeter() String getGreeting()
Assert(myGreeter.getGreeting(), “Hello World™) {
} return greeting
} 3
}

Copyright © 2011 Boeing. All rights reserved.



Very Simple TDD Example (cont’d)

[Test] public class Greeter

public class Greeter_Test {
{ const String greeting = “Hello World”
const String expectedGreeting = “Hello World”
Greeter()
[TestMethod]
public void TestDisplayHelloWorld() String getGreeting()
{ {
Greeter myGreeter = new Greeter() return greeting
Assert(myGreeter.getGreeting(), expectedGreeting) }

} }

}

Copyright © 2011 Boeing. All rights reserved.



Very Simple TDD Example (cont’d)

[Test] public class Greeter
public class Greeter_Test {
{ const String greeting = “Hello World”
const String expectedGreeting = “Hello World”
private Greeter()
[TestMethod]
public void TestDisplayHelloWorld() static Greeter Getlnstance()
{ {
Greeter myGreeter = new Greeter() return new Greeter()
Assert(myGreeter.getGreeting(), expectedGreeting) 3}
}
} String getGreeting()
{
return greeting
}

}

Compilation Error

Copyright © 2011 Boeing. All rights reserved.



Very Simple TDD Example (cont’d)

[Test] public class Greeter
public class Greeter_Test {
{ const String greeting = “Hello World”
const String expectedGreeting = “Hello World”
private Greeter()
[TestMethod]
public void TestDisplayHelloWorld() static Greeter Getlnstance()
{ {
Greeter myGreeter = Greeter.Getlnstance() return new Greeter()
Assert(myGreeter.getGreeting(), expectedGreeting) }
}
} String getGreeting()
{
return greeting
}

}

Copyright © 2011 Boeing. All rights reserved.



Very Simple TDD Example (cont’d)

[Test] public class Greeter
public class Greeter_Test {
{ const String greeting = “Hello World”
const String expectedGreeting = “Hello World”
private Greeter()
[TestMethod]
public void TestDisplayHelloWorld() static Greeter Getlnstance()
{ {
Assert(Greeter.Getlnstance() -.getGreeeting, return new Greeter()
expectedGreeting) }
3
} String getGreeting()
{
return greeting
3
}
Back

Copyright © 2011 Boeing. All rights reserved.



	From Details to Done
	Topics
	Traditional Development Cycle
	Moving Tests Forward
	Testing in an Agile Development Cycle
	How Does Testing Drive Development?
	TDD at the Unit Test Level
	TDD at the Unit Test Level   (cont’d)
	TDD at the Integration Test Level
	TDD at the Acceptance Test Level
	Driving Development with Tests
	From Details to Done
	Benefits of Test-Driven Development
	Drawbacks of Test-Driven Development
	Slide Number 15
	Very Simple TDD Example – Hello World
	Very Simple TDD Example   (cont’d)
	Very Simple TDD Example   (cont’d)
	Very Simple TDD Example   (cont’d)
	Very Simple TDD Example   (cont’d)
	Very Simple TDD Example   (cont’d)
	Very Simple TDD Example   (cont’d)
	Very Simple TDD Example   (cont’d)
	Very Simple TDD Example   (cont’d)
	Very Simple TDD Example   (cont’d)

